Store   |   Help   |   Jobs   |   Print Page   |   Contact Us   |   Sign In   |   Create Account
Site Search
Online Store: CAMX 2016 - Anaheim, CA - September 26-29 / 2016
Main Storefront
        

Numerical Simulation of a Multilayer Transparent Composite Panel Under Impact

Item Options
Sign in for your pricing!
Price: $26.00
Quantity: *
 
Description

 

Numerical Simulation of a Multilayer Transparent Composite Panel Under Impact

 

The prevailing material system used for ballistic transparency protection in commercial applications consists of float glass front-face layer, adhesive interlayers and polycarbonate backing layer. In this study, a dynamic finite element model has been developed to simulate the ballistic impact behavior of a multilayer transparent composite panel (float glass/polyurethane adhesive layer/polycarbonate) in LS-DYNA. The ballistic resistance of this system against 7.62 mm caliber armor piercing (AP) ammunition under threat level I (833 m/s) according to NATO Standardization Agreement STANAG 4569 was investigated. The nonlinear material models for float glass, polyurethane adhesive, polycarbonate, and bullet (copper jacket and lead core) were applied to characterize the ballistic behavior during high velocity impact. Finite element analysis results were validated by comparing with experimental findings. A multilayer artificial neural network with back-propagation algorithm was used to optimize the total thickness of transparent ballistic panel while maintaining the safety under threat level I.

 

Authors: Zhen Huo, Gregory Taylor, Sudharshan Anandan and K. Chandrashekhara

 

Conference: CAMX 2016 – Anaheim

 

SKU/Code: TP16-0157

 

Pages: 13



 

more Calendar

9/11/2017 » 9/14/2017
CAMX 2017

10/4/2017 » 10/5/2017
Composites Today 2-Day Seminar

My Profile
Membership Management Software Powered by YourMembership  ::  Legal