Store | Help | Jobs | Print Page | Contact Us | Sign In | Create Account
Online Store: SAMPE Seattle 2017
Main Storefront

An Efficient Modelling Approach for Prediction of Porosity Severity

Item Options
Sign in for your pricing!
Price: $18.00
Quantity: *


An Efficient Modelling Approach for Prediction of Porosity Severity in Composite Structures


Porosity, as a manufacturing process-induced defect, highly affects the mechanical properties of cured composites. Multiple phenomena affect the formation of porosity during the cure process. Porosity sources include entrapped air, volatiles and off-gassing as well as bag and tool leaks. Porosity sinks are the mechanisms that contribute to reducing porosity, including gas transport, void shrinkage and collapse as well as resin flow into void space. Despite the significant progress in porosity research, the fundamentals of porosity in composites are not yet fully understood. The highly coupled multi-physics and multi-scale nature of porosity make it a complicated problem to predict. Experimental evidence shows that resin pressure history throughout the cure cycle plays an important role in the porosity of the cured part. Maintaining high resin pressure results in void shrinkage and collapse keeps volatiles in solution thus preventing off-gassing and bubble formation. This study summarizes the latest development of an efficient finite element (FE modeling) framework to simulate the gas and resin transport mechanisms that are among the major phenomena contributing to porosity.


Author: Houman Bedayat


Conference: SAMPE Seattle 2017

SKU/Code: SE17--0768

Pages: 9

Platinum Corporate Partners

Find Us

21680 Gateway Center Drive
Suite 300
Diamond Bar, CA 91765-2454

P: +1.626.521.9460